无论是高压变频器还是低压变频器,无论是恒转矩负载还是恒功率负载,或是二次减转矩负载,都需要在变频器参数中设定加速时间和减速时间。加速时间是变频器从最低频率加速到最高频率所需要的时间。减速时间是变频器从最高频率减速到0Hz所需要的时间。在进行变频器参数设定时,必须对变频器的加减速时间进行设定。如果加速时间设定过短则会使变频器报“过流” 故障停机。如果减速时间过短则会使变频器报“过压” 故障停机。 为什么这两个参数设定不当会导致过电流和过电压故障停机呢?目前为止,还没有看到有关的理论分析的文章。本文从电机学理论出发,较详细地分析了变频器加速时间过短与减速时间过短,导致加速过流与减速过压的原因,并提出这两个参数的设定方法。
例如,同步转速到了40Hz,而此时实际运行转速却还在20Hz。这时电机运行的转差率为0.5。由此可知,加速时间过短会使实际运行的转速变化跟不上同歩转速的变化,使转差率S过大。负载阻力越大,电机运行转差率越大。电动机转差率越大为什么电运机的运行电流会越大呢? 异歩电动机等值电路归算到定子侧如图1所示。电动机转差率S≈0和S=1的两种特殊运行情况是空载和起动瞬间。S≈0时运行电流最小,S=1时运行电流最大。在图1电路中,r1,x1,x2′,r2′,xm,rm都是固定参数(1-S/S)×r2′是变动的阻值。这个变动的电阻是机械负载的等效电阻。负载大这个变动电阻就小;负载小这个变动电阻就大。从图1可知,总电流I1但与(1-S/S)×r2′有关,而且还主要取决于它。 总电流I1的计算公式如下:
异歩电动机在发电状态下,机械特性曲线如图2所示。电动机在运行电动机状态下时的机械特性曲线为1。机械负荷为Mf。在电机减速时,从机械特性曲线1滑落到机械特性曲线2. 减速到机械特性曲线2时,同步转速为n02,由于机械负载的惯性的影响,实际上运行速度并没有及时降到n02以内,仍然在n02到nr以内。这时电动机运行在机械特性曲线2的A点。这时电动机的状态是:工作在机械特性曲线第Ⅲ象限,实际运行转速nr高于同歩转速n02,转矩的方向与转速的方向相反,产生制动转矩,电动机处于发电状态。从能量守恒定理来看:这是由机械转动惯量所贮存的机械能转化为电能。此时旳三相异步电动机已成为交流发电机,所发电压:
1. 加速过大导致的过流:当在变频器启动和加速过程中,变频器的输出频率不断增加,同时输出电压也会随之增加,增大的负载需求的电流,因此变频器会产生过流。此时,变频器会通过保护机制将电路关闭,以避免损坏电路设备的情况发生。 2. 电源电压不稳导致的减速过压:由于电源电压不稳定或当电动机的瞬间速度不断提高,此时输出瞬间功率会加大,因为跟电磁感应定律,电磁感应电动势差会增加,此时会导致减速时系统电路中出现电压过高。 3. 电容损坏所导致的故障:电容是变频器中的重要部件之一,如果电容损坏或失效将会对变频器工作造成重大影响。当电容老化或烧坏时,可能会导致电压升高或放电速度不够快,从而导致电容电压大幅上升,进而引发减速过压或加速过流等故障。 4. 电机参数不匹配:变频器必须与驱动的电机机型相匹配,否则可能会产生不匹配的应力波动,导致减速过压或加速过流故障的发生。 为了避免以上问题的发生,我们应当确保变频器和电机的参数的匹配性,加强对安装和使用细节的操作,特别是在启动和停止过程中要谨慎而周到,保证设备运行在正常范围内。 |
/1
|手机版|免责声明|本站介绍|工控课堂
( 沪ICP备20008691号-1 )
GMT+8, 2025-12-23 02:00 , Processed in 0.088541 second(s), 23 queries .
Powered by Discuz! X3.5
© 2001-2025 Discuz! Team.