找回密码
 立即注册

QQ登录

只需一步,快速开始

工控课堂 首页 工控文库 上位机编程 查看内容

flink-cdc同步mysql数据到hbase

2022-9-18 14:47| 发布者: gk-auto| 查看: 831| 评论: 0|来自: 博客园

摘要: 本文首发于我的个人博客网站等待下一个秋-Flink什么是CDC?CDC是(Change Data Capture 变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据 或 数据表的插入INSERT、更新UPDATE、删除DELETE等), ...

本文首发于我的个人博客网站 等待下一个秋-Flink

什么是CDC?

CDC是(Change Data Capture 变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据 或 数据表的插入INSERT、更新UPDATE、删除DELETE等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。

Flink_CDC

1. 环境准备

  • mysql

  • hbase

  • flink 1.13.5 on yarn

说明:如果没有安装hadoop,那么可以不用yarn,直接用flink standalone环境吧。

2. 下载下列依赖包

下面两个地址下载flink的依赖包,放在lib目录下面。

  1. flink-sql-connector-hbase-1.4_2.11-1.13.5.jar
  2. flink-sql-connector-mysql-cdc-1.4.0.jar

如果你的Flink是其它版本,可以来这里下载。

我是flink1.13,这里flink-sql-connector-mysql-cdc,需要1.4.0以上版本。

image-20220913170030754

如果你是更高版本的flink,可以自行https://github.com/ververica/flink-cdc-connectors下载新版mvn clean install -DskipTests 自己编译。

img

这是我编译的最新版2.2,传上去发现太新了,如果重新换个版本,我得去gitee下载源码,不然github速度太慢了,然后用IDEA编译打包,又得下载一堆依赖。我投降,我直接去网上下载了个1.4的直接用了。

我下载的jar包,放在flink的lib目录下面:

image-20220915145142496

flink-sql-connector-hbase-1.4_2.11-1.13.5.jar
flink-sql-connector-mysql-cdc-1.4.0.jar
  1. 先在yarn上面启动一个application,进入flink13.5目录,执行:
bin/yarn-session.sh -d -s 2 -jm 1024 -tm 2048 -qu root.sparkstreaming -nm flink-cdc-hbase
  1. 进入flink sql命令行
bin/sql-client.sh embedded -s flink-cdc-hbase

img

4. 同步数据

这里有一张mysql表:

CREATE TABLE `product_view` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`user_id` int(11) NOT NULL,
`product_id` int(11) NOT NULL,
`server_id` int(11) NOT NULL,
`duration` int(11) NOT NULL,
`times` varchar(11) NOT NULL,
`time` datetime NOT NULL,
PRIMARY KEY (`id`),
KEY `time` (`time`),
KEY `user_product` (`user_id`,`product_id`) USING BTREE,
KEY `times` (`times`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

-- 样本数据
INSERT INTO `product_view` VALUES ('1', '1', '1', '1', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('2', '1', '1', '1', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('3', '1', '1', '3', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('4', '1', '1', '2', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('5', '8', '1', '1', '120', '120', '2020-05-14 13:14:00');
INSERT INTO `product_view` VALUES ('6', '8', '1', '2', '120', '120', '2020-05-13 13:14:00');
INSERT INTO `product_view` VALUES ('7', '8', '1', '3', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('8', '8', '1', '3', '120', '120', '2020-04-23 13:14:00');
INSERT INTO `product_view` VALUES ('9', '8', '1', '2', '120', '120', '2020-05-13 13:14:00');
  1. 创建数据表关联mysql
CREATE TABLE product_view_source (
`id` int,
`user_id` int,
`product_id` int,
`server_id` int,
`duration` int,
`times` string,
`time` timestamp,
PRIMARY KEY (`id`) NOT ENFORCED
) WITH (
'connector' = 'mysql-cdc',
'hostname' = '192.168.1.2',
'port' = '3306',
'username' = 'bigdata',
'password' = 'bigdata',
'database-name' = 'test',
'table-name' = 'product_view'
);

这样,我们在flink sql client操作这个表相当于操作mysql里面的对应表。

  1. 创建数据表关联hbase
CREATE TABLE product_view_hbase (
 rowkey INT,
 family1 ROW<user_id INT, product_id INT, server_id INT, duration 


关注公众号,加入500人微信群,下载100G免费资料!

最新评论

热门文章
关闭

站长推荐上一条 /1 下一条

QQ|手机版|免责声明|本站介绍|工控课堂 ( 沪ICP备20008691号-1 )

GMT+8, 2025-12-22 23:32 , Processed in 0.066566 second(s), 23 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.